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Abstract

Introduction: Ablation of persistent atrial fibrillation
targets using dominant frequency (DF), rotors, and
complex fractionated atrial electrograms has been
disappointing. A transfer learning applied to electrogram
(EGM) spectrograms may be a promising tool for
predicting ablation outcomes. Methods: 3206 non-
contact EGMs were collected before and after ablating
51 high DF locations of 10 patients. Two categories of
data were labelled: 1490 EGMs had positive ablation
responses (AF termination or AF cycle length (AFCL)
increased (>10msec)), whereas 1716 EGMs had negative
responses (AFCL increase (<10msec)) to catheter
ablation. After QRST subtraction, EGMs were converted
to spectrograms. The residual network, equipped with a
50-layer pre-trained model, was utilized to extract
features for training and testing the transferred fully
connected layers. The model performance was evaluated
using a leave-one-patient-out 10-fold cross-validation
(CV). Results: The 10-fold CV accuracy, balanced
accuracy, F1_score, AUC-ROC, sensitivity, specificity,
and precision were 60.2%, 60.0%, 55.0%, 0.64, 51.5%,
67.8% and 58.2% respectively. Conclusions: A transfer
learning applied to spectrograms might be useful in
predicting the local atrial tissue responses to ablation
and their effect on terminating AF and changes in CL.

1. Introduction

Atrial fibrillation (AF) is the most common
arrhythmia, affecting around 1-2% of the population. The
risk of stroke is increased by around 5-fold in AF patients
[1]. Pulmonary vein isolation (PVI) is the cornerstone of
ablation protocols for various types of AF. Ablation
strategies of persistent AF are more complicated and
require ablation of additional sites in the atria responsible
for AF drivers. Several classical methods have been used
to target the AF drivers, including dominant frequency
(DF) [2], rotors [3], and complex fractionated atrial
electrograms (CFAESs) [4]. The ablation outcomes using

Computing in Cardiology 2025; Vol 52

these methods have been suboptimal in patients with
persistent AF. Analysis of EGM signals has been used as
a method to detect the AF drivers that are responsible for
the initiation and perpetuation of AF. Spectral analysis
has been widely used to find features relevant to the EGM
signal characteristics of AF and non-AF (e.g., DF [2],
organization index (OlI) [5]). In the same context,
temporal analysis of EGMs has also been considered to
guide catheter ablation of AF targets (e.g., recurrence plot
analysis (RQA) [6]. Power spectral density has also
played a role in characterizing the EGMs for treating AF
[7, 8]. Spectrograms contain information related to the
frequency, time, and power of the signals. Therefore, in
this work, spectrograms generated from EGM signals
were used as input to a residual neural network via
transfer learning techniques to classify the EGM
responses to catheter ablation in terms of AF termination
and changing the AF cycle length.

2. Materials and Methods

The complete framework for the proposed method is
shown in Figure 1, indicating the method for the
prediction of EGM responses to catheter ablation
(positive and negative).

2.1. Dataset Collection and Labeling

A total of 3206 non-contact EGMs were collected
using a mapping catheter (Ensite array, Abbot, USA).
These signals were collected by ablating 51 locations
identified as high dominant frequency (HDF) regions in
the left atrium of 10 persistent AF (persAF) patients to
guide the catheter during the ablation procedure. The
EGM signals for 4 seconds duration were collected pre-
and post-ablations. The EGM signals were labeled by
cardiologists from the Leicester Glenfield Hospital into
two classes: a positive response to catheter ablation (AF
termination or AF cycle length increasing by >=10ms),
and negative responses (AFCL increasing <10ms) [9].
Four out of ten patients had AF termination (3 flutter and
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Figure 1: The framework of the proposed method;
starting from the electrogram data as inputs, splitting
them into train and test sets, then generating the
spectrograms from each signal, loading the ResNet50
model to extract 2048 features, and finally using
transferred fully connected layers to classify the EGM
responses.

2.2.  AF Signal Processing

The collected signals were sampled at a rate of 2038.5
Hz and then resampled at 512 Hz to reduce processing
time and memory allocation. A QRST complex
subtraction process was applied to remove far-field
activity resulting from ventricular activity, which can
distort the true AF characteristics [10]. Lead | was used as
a reference lead in the QRST removal process (Figure 2).

2.3.  AF Electrogram Analysis

After removing the QRST effect from the EGM
signals, a spectrogram was generated. The 2-dimensional
spectrogram image of electrogram signals can reflect the
dynamic changes in the energy, frequency, and time
components of these signals. This provides additional
information about the characteristics of EGM signals. The
process to construct the spectrogram using short time
Fourier transform (STFT) is shown in the Figure 3. A
spectrogram was constructed using equations 1 and 2, and
a Hanning window was used as an anti-leakage window
function with a length (NFFT) of 512 samples (1 second),
and an overlap length between the successive windows of

128 samples (0.5 second).

QRST subtraction

ECG Lead |

Non-contact mapping

Negative outcome @ Positive outcome --=-EGM —— EGM after QRST removal

Figure 2: The QRST subtracting process (A) the EGM
signals collected from the left atrium and their labelled
(positive and negative) responses to ablation and (B) the
QRST subtraction process using Lead | ECG as reference.

X(t,w) = ZOO_ x[n]w[n — mle~/«t 1

1X (1, w)|? 2

Where x[n] is the original EGM signal being analyzed,
w[n —m] is the Hanning window function centered at
time m, and |X(r,w)|> is the spectrogram
(power/frequency content over time).

2.4.  ResNet50 using Transfer Learning

The Residual Neural Network 50 (ResNet50) model
has been considered one of the well-known models used
in computer vision. This deep learning model is trained
on large and diverse categories of datasets. This pre-
trained model can be used to solve different computer
vision problems using the transfer learning technique.
Feature extraction layers were frozen in the ResNet50
model, and the pre-trained weights were used to extract
features from the spectrograms. The classifier part of the
Resnet50 model was adapted to the new task for
predicting the ablation outcomes. Figure 4 shows the
feature extraction and transferred layer classifier parts
used in this work. The input image size for the ResNet50
model is 224 x 224 x 3 for color images. We resized all
spectrogram images to 224 x 224-pixel resolution to
match the size of the input layer in the ResNet50 model.
The model architecture comprises a series of
convolutional layers and fully connected layers. The first
convolution layer consists of 64 different kernels of size 7
x 7 and a stride size of 3 x 3, followed by a max pooling

EGM signal
E AhA AR ‘*\ Framing and FFT
e 'uﬁ".’-l W\“ﬁ ¥ ‘\ M "lilf‘” WY — Pre-emphasis - windowing (NFFT =512,
< T ry (Hanning window) Overlap 128)
ime — =
Spectrogram

STFT

Figure 3: The process of converting the EGM signal to a spectrogram using a Hanning window of size 512 samples
(1 second) with an overlap of 128 samples (50%) between windows.
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operation with a stride size of 2. The following
convolution blocks (Conv Block and Identity Block) are
made of three convolution layers (1 x 1 x 64 kernels), (3
x 3 x 64 kernels), and (1 x 1 x 256 kernels). These are
repeated 3 times as shown in Figure 4. Following the
same procedure, convolution layers (1 x 1 x 128 kernels),
(3 x 3 x 128 kernels) and (1 x 1 x 512 kernels) are
repeated 4 times; followed by three convolution layers (1
x 1 x 256 kernels), (3 x 3 x 256 kernels) and (1 x 1 x
1024 kernels) repeated six times and lastly three
convolution layers (1 x 1 x 512 kernels), (3 x 3 x 512
kernels) and (1 x 1 x 2048 kernels) repeated 3 times.
Then, global average pooling is applied to generate 2048
features from each spectrogram image. These features
were used as input to a ResNet50 fine-tuning classifier to
classify the EGM responses to catheter ablation. Four
fully connected layers with nodes (2048, 1024, 512, 256)
were used to build the classifier part, followed by batch
normalization after each layer. We used halving patterns
in layer sizes to enable the network to progressively
compress and abstract the information. The batch
normalization process makes training faster, more stable,
and less sensitive to initialization. Figure 4 shows the
architecture of the ResNet50 model, showing the name,
size, and operations of each of the 50 layers.

3. Experimental Results and Discussion

The transfer learning technique was applied using the
ResNet50 pretrained model via the spectrogram images

for predicting the catheter ablation outcomes. A leave-
one-patient-out  10-fold cross-validation (LOPOCV)
technique was used to split the train and test sets to
prevent any data leakage from training to the testing set
of data, where electrograms from 9 patients were used to
train the model, and the remaining patient was used for
testing. This process was repeated 10 times, and an
average was taken for evaluating the model for seven
evaluation metrics (overall accuracy, balanced accuracy,
sensitivity, Specificity, precision, F1 score, and area
under the receiver operating characteristic curve
(AUROC)). The proposed model was trained for 50
epochs. In each epoch during the training and validation,
the accuracy and loss were calculated. We used the Adam
optimizer with a learning rate of 0.0001, beta 1=0.9,
beta 2=0.999, and epsilon=1e-07. We used a cross-
entropy loss and a batch size of 512, which is the number
of spectrograms that passed through the network
simultaneously during the training process. The 10-fold
CV accuracy, balanced accuracy, F1_score, AUC-ROC,
sensitivity, specificity, and precision were 60.2%, 60.0%,
55.0%, 0.64, 51.5%, 67.8% and 58.2%, respectively,
using the testing dataset. Figure 5A shows the confusion
matrix, which shows the true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) values
for the 10 EGM patients. The ROC and the AUC for the
proposed transfer learning approach are shown in Figure
5B. It can be seen that the model predicts EGM negative
responses to ablation more accurately than positive
response signals (Figure 5A). The spectrogram transforms
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Figure 4: Transfer learning using the ResNet50 model. It shows the layers used to extract 2048 features from spectrogram
images with size (224 x 224 x 3). Also shows the process of freezing the classifier layers (red block) and replacing them

+ve = EGM positive responses
-ve = EGM negative responses

with 4 layers (yellow blocks) for predicting the ablation outcomes.
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the electrogram signals into the time-frequency domain,
revealing several parameters such as the DF content [2],
repetitive patterns, fractionation [11], and temporal
variability that have been used in characterizing EGM
signals for predicting ablation outcomes [12]. Therefore,
representing the EGM signal in the time-frequency
domain helped in classifying the positive and negative
responses of these signals to the ablation procedure.
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Figure 5: (A) Confusion matrix (CM), and (B) the
ROC for the proposed method

4. Conclusions

Spectrograms, with the help of the transfer learning
technique using the ResNet50 model, played a role in
predicting the responses of ablating the EGMs and their
effect on AF termination and CL changes. The model
achieved a 10-fold CV overall accuracy of 60.2%,
balanced accuracy of 60%, F1_score of 55%, AUC-ROC
of 0.64, sensitivity of 51.5%, specificity of 67.8% and
precision of 58.2% by evaluating the proposed model on
the test (unseen) dataset. This is an indication that the
time-frequency representation of the EGM signals might
be helpful for discriminating the EGM responses to
catheter ablation.
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