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Abstract 

Introduction: Ablation of persistent atrial fibrillation 

targets using dominant frequency (DF), rotors, and 

complex fractionated atrial electrograms has been 

disappointing. A transfer learning applied to electrogram 

(EGM) spectrograms may be a promising tool for 

predicting ablation outcomes. Methods: 3206 non-

contact EGMs were collected before and after ablating 

51 high DF locations of 10 patients. Two categories of 

data were labelled: 1490 EGMs had positive ablation 

responses (AF termination or AF cycle length (AFCL) 

increased (≥10msec)), whereas 1716 EGMs had negative 

responses (AFCL increase (<10msec)) to catheter 

ablation. After QRST subtraction, EGMs were converted 

to spectrograms. The residual network, equipped with a 

50-layer pre-trained model, was utilized to extract

features for training and testing the transferred fully

connected layers. The model performance was evaluated

using a leave-one-patient-out 10-fold cross-validation

(CV).  Results: The 10-fold CV accuracy, balanced

accuracy, F1_score, AUC-ROC, sensitivity, specificity,

and precision were 60.2%, 60.0%, 55.0%, 0.64, 51.5%,

67.8% and 58.2% respectively. Conclusions: A transfer

learning applied to spectrograms might be useful in

predicting the local atrial tissue responses to ablation

and their effect on terminating AF and changes in CL.

1. Introduction

Atrial fibrillation (AF) is the most common 

arrhythmia, affecting around 1-2% of the population. The 

risk of stroke is increased by around 5-fold in AF patients 

[1]. Pulmonary vein isolation (PVI) is the cornerstone of 

ablation protocols for various types of AF. Ablation 

strategies of persistent AF are more complicated and 

require ablation of additional sites in the atria responsible 

for AF drivers. Several classical methods have been used 

to target the AF drivers, including dominant frequency 

(DF) [2], rotors [3], and complex fractionated atrial 

electrograms (CFAEs) [4]. The ablation outcomes using 

these methods have been suboptimal in patients with 

persistent AF. Analysis of EGM signals has been used as 

a method to detect the AF drivers that are responsible for 

the initiation and perpetuation of AF. Spectral analysis 

has been widely used to find features relevant to the EGM 

signal characteristics of AF and non-AF (e.g., DF [2], 

organization index (OI) [5]).  In the same context, 

temporal analysis of EGMs has also been considered to 

guide catheter ablation of AF targets (e.g., recurrence plot 

analysis (RQA) [6]. Power spectral density has also 

played a role in characterizing the EGMs for treating AF 

[7, 8]. Spectrograms contain information related to the 

frequency, time, and power of the signals. Therefore, in 

this work, spectrograms generated from EGM signals 

were used as input to a residual neural network via 

transfer learning techniques to classify the EGM 

responses to catheter ablation in terms of AF termination 

and changing the AF cycle length. 

2. Materials and Methods

The complete framework for the proposed method is 

shown in Figure 1, indicating the method for the 

prediction of EGM responses to catheter ablation 

(positive and negative). 

2.1. Dataset Collection and Labeling 

A total of 3206 non-contact EGMs were collected 

using a mapping catheter (Ensite array, Abbot, USA). 

These signals were collected by ablating 51 locations 

identified as high dominant frequency (HDF) regions in 

the left atrium of 10 persistent AF (persAF) patients to 

guide the catheter during the ablation procedure. The 

EGM signals for 4 seconds duration were collected pre- 

and post-ablations. The EGM signals were labeled by 

cardiologists from the Leicester Glenfield Hospital into 

two classes: a positive response to catheter ablation (AF 

termination or AF cycle length increasing by >=10ms), 

and negative responses (AFCL increasing <10ms) [9]. 

Four out of ten patients had AF termination (3 flutter and 
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one sinus rhythm) before the following PVI procedure. 

Figure 1: The framework of the proposed method; 

starting from the electrogram data as inputs, splitting 

them into train and test sets, then generating the 

spectrograms from each signal, loading the ResNet50 

model to extract 2048 features, and finally using 

transferred fully connected layers to classify the EGM 

responses. 

2.2. AF Signal Processing 

The collected signals were sampled at a rate of 2038.5 

Hz and then resampled at 512 Hz to reduce processing 

time and memory allocation.  A QRST complex 

subtraction process was applied to remove far-field 

activity resulting from ventricular activity, which can 

distort the true AF characteristics [10]. Lead I was used as 

a reference lead in the QRST removal process (Figure 2). 

2.3. AF Electrogram Analysis 

After removing the QRST effect from the EGM 

signals, a spectrogram was generated. The 2-dimensional 

spectrogram image of electrogram signals can reflect the 

dynamic changes in the energy, frequency, and time 

components of these signals. This provides additional 

information about the characteristics of EGM signals. The 

process to construct the spectrogram using short time 

Fourier transform (STFT) is shown in the Figure 3. A 

spectrogram was constructed using equations 1 and 2, and 

a Hanning window was used as an anti-leakage window 

function with a length (NFFT) of 512 samples (1 second), 

and an overlap length between the successive windows of 

128 samples (0.5 second). 

Figure 2: The QRST subtracting process (A) the EGM 

signals collected from the left atrium and their labelled 

(positive and negative) responses to ablation and (B) the 

QRST subtraction process using Lead I ECG as reference. 
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Where 𝑥[𝑛] is the original EGM signal being analyzed, 

𝑤[𝑛 − 𝑚] is the Hanning window function centered at 

time 𝑚, and |𝑋(𝜏, 𝜔)|2 is the spectrogram

(power/frequency content over time).  

2.4. ResNet50 using Transfer Learning 

The Residual Neural Network 50 (ResNet50) model 

has been considered one of the well-known models used 

in computer vision. This deep learning model is trained 

on large and diverse categories of datasets. This pre-

trained model can be used to solve different computer 

vision problems using the transfer learning technique. 

Feature extraction layers were frozen in the ResNet50 

model, and the pre-trained weights were used to extract 

features from the spectrograms. The classifier part of the 

Resnet50 model was adapted to the new task for 

predicting the ablation outcomes. Figure 4 shows the 

feature extraction and transferred layer classifier parts 

used in this work.  The input image size for the ResNet50 

model is 224 × 224 × 3 for color images. We resized all 

spectrogram images to 224 × 224-pixel resolution to 

match the size of the input layer in the ResNet50 model. 

The model architecture comprises a series of 

convolutional layers and fully connected layers. The first 

convolution layer consists of 64 different kernels of size 7 

× 7 and a stride size of 3 × 3, followed by a max pooling 

Figure 3: The process of converting the EGM signal to a spectrogram using a Hanning window of size 512 samples 

(1 second) with an overlap of 128 samples (50%) between windows. 
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operation with a stride size of 2. The following 

convolution blocks (Conv Block and Identity Block) are 

made of three convolution layers (1 × 1 × 64 kernels), (3 

× 3 × 64 kernels), and (1 × 1 × 256 kernels). These are 

repeated 3 times as shown in Figure 4. Following the 

same procedure, convolution layers (1 × 1 × 128 kernels), 

(3 × 3 × 128 kernels) and (1 × 1 × 512 kernels) are 

repeated 4 times; followed by three convolution layers (1 

× 1 × 256 kernels), (3 × 3 × 256 kernels) and (1 × 1 × 

1024 kernels) repeated six times and lastly three 

convolution layers (1 × 1 × 512 kernels), (3 × 3 × 512 

kernels) and (1 × 1 × 2048 kernels) repeated 3 times. 

Then, global average pooling is applied to generate 2048 

features from each spectrogram image. These features 

were used as input to a ResNet50 fine-tuning classifier to 

classify the EGM responses to catheter ablation. Four 

fully connected layers with nodes (2048, 1024, 512, 256) 

were used to build the classifier part, followed by batch 

normalization after each layer. We used halving patterns 

in layer sizes to enable the network to progressively 

compress and abstract the information. The batch 

normalization process makes training faster, more stable, 

and less sensitive to initialization. Figure 4 shows the 

architecture of the ResNet50 model, showing the name, 

size, and operations of each of the 50 layers. 

3. Experimental Results and Discussion

The transfer learning technique was applied using the 

ResNet50 pretrained model via the spectrogram images 

for predicting the catheter ablation outcomes. A leave-

one-patient-out 10-fold cross-validation (LOPOCV) 

technique was used to split the train and test sets to 

prevent any data leakage from training to the testing set 

of data, where electrograms from 9 patients were used to 

train the model, and the remaining patient was used for 

testing. This process was repeated 10 times, and an 

average was taken for evaluating the model for seven 

evaluation metrics (overall accuracy, balanced accuracy, 

sensitivity, Specificity, precision, F1_score, and area 

under the receiver operating characteristic curve 

(AUROC)). The proposed model was trained for 50 

epochs. In each epoch during the training and validation, 

the accuracy and loss were calculated. We used the Adam 

optimizer with a learning rate of 0.0001, beta_1=0.9, 

beta_2=0.999, and epsilon=1e-07. We used a cross-

entropy loss and a batch size of 512, which is the number 

of spectrograms that passed through the network 

simultaneously during the training process. The 10-fold 

CV accuracy, balanced accuracy, F1_score, AUC-ROC, 

sensitivity, specificity, and precision were 60.2%, 60.0%, 

55.0%, 0.64, 51.5%, 67.8% and 58.2%, respectively, 

using the testing dataset. Figure 5A shows the confusion 

matrix, which shows the true positive (TP), true negative 

(TN), false positive (FP), and false negative (FN) values 

for the 10 EGM patients. The ROC and the AUC for the 

proposed transfer learning approach are shown in Figure 

5B. It can be seen that the model predicts EGM negative 

responses to ablation more accurately than positive 

response signals (Figure 5A). The spectrogram transforms 

Figure 4: Transfer learning using the ResNet50 model. It shows the layers used to extract 2048 features from spectrogram 

images with size (224 × 224 × 3). Also shows the process of freezing the classifier layers (red block) and replacing them 

with 4 layers (yellow blocks) for predicting the ablation outcomes. 
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the electrogram signals into the time-frequency domain, 

revealing several parameters such as the DF content [2], 

repetitive patterns, fractionation [11], and temporal 

variability that have been used in characterizing EGM 

signals for predicting ablation outcomes [12]. Therefore, 

representing the EGM signal in the time-frequency 

domain helped in classifying the positive and negative 

responses of these signals to the ablation procedure.  

Figure 5: (A) Confusion matrix (CM), and (B) the 

ROC for the proposed method 

4. Conclusions

Spectrograms, with the help of the transfer learning 

technique using the ResNet50 model, played a role in 

predicting the responses of ablating the EGMs and their 

effect on AF termination and CL changes. The model 

achieved a 10-fold CV overall accuracy of 60.2%, 

balanced accuracy of 60%, F1_score of 55%, AUC-ROC 

of 0.64, sensitivity of 51.5%, specificity of 67.8% and 

precision of 58.2% by evaluating the proposed model on 

the test (unseen) dataset. This is an indication that the 

time-frequency representation of the EGM signals might 

be helpful for discriminating the EGM responses to 

catheter ablation.  
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